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ABSTRACT
A new approach to align an image of a medical object with a given
prototype (reference object) is proposed. Visual appearance of the im-
ages, after equalizing their signals, is modeled with a new variant rota-
tion and scaling Markov-Gibbs random field with pairwise interaction
model. Similarity to the prototype (reference object) is measured by
a Gibbs energy of signal co-occurrences in a characteristic subset of
pixel pairs derived automatically from the prototype (reference object)
using our previous Linear Combination of Discrete Gaussians (LCDG)
probabilistic model. An object is aligned by an affine transformation
maximizing the similarity by using an automatic initialization followed
by gradient search. Experiments confirm that our approach aligns com-
plex objects better than popular conventional algorithms.

Index Terms— Markov-Gibbs Random Field (MGRF), Lung,
Computed Tomography (CT).

1. INTRODUCTION

Image registration aligns two or more images of similar objects taken at
different times, from different viewpoints, and/or by different sensors.
The images are geometrically transformed to ensure their close similar-
ity. Registration is a crucial step in many applied image analysis tasks,
e.g. to fuse various data sources (such as computer tomography (CT)
and MRI data in medical imaging) for image fusion, change detec-
tion, or multichannel image restoration; form and classify multi-band
images in remote sensing; update maps in cartography, perform auto-
matic quality control in industrial vision, and so forth. Co-registered
medical images provide more complete information about the patient,
help to monitor tumor growth and verify treatment, and allow for com-
paring the patient’s data to anatomical atlases (For more detail about
medical image registration see [1–3]).

Most of the known registration methods fall into two main cat-
egories: feature-based and area-based techniques [4]. Feature based
techniques use sparse geometric features such as points, curves, and/or
surface patches, and their correspondences to compute an optimal
transformation. Area-based methods such as the classical least square
correlation match directly image signals to avoid feature extraction [5].

More powerful mutual information (MI) based image registra-
tion [6, 7] exploits a probabilistic similarity measure that allows for
more general types of signal deviations than correlation. The statistical
dependency between two data sets is measured by comparing a joint
empirical distribution of the corresponding signals in the two images
to the joint distribution of the independent signals. Because the MI-
based registration performs the best with multi-modal images [7], it is
used in many of medical imaging applications. The joint distribution
is estimated using Parzen windows [8, 9] or discrete histograms [10].
The main advantage of the MI is insensitivity to monotone variations
of correspondence between the object and prototype signals, but the
objects should be of almost identical shape apart from their affine
geometrical and monotone signal transformations. The MI allows also

for some non-monotone signal correspondence variations although
they may change the visual appearance too much and hinder registra-
tion accuracy (e.g., see [11] for more details about MI based image
registration).

We consider a more general case of registering a medical object to
a prototype with similar but not necessarily identical visual appearance
under their relative 2D affine transformations and monotone variations
of signal correspondences. The variations are suppressed by equaliz-
ing signals in the images. The co-registered equalized images are de-
scribed with a characteristic subset of signal co-occurrence statistics.
The description implicitly “homogenizes” the images, i.e. considers
them as spatially homogeneous patterns with the same statistics. In
contrast to the feature-based registration, the statistics characterize the
whole object. In contrast to the conventional area-based techniques,
similarities between the statistics rather than pixel-to-pixel correspon-
dences are measured. Section 2 represents the equalized object and
prototype images as samples of a generic Markov–Gibbs random field
(MGRF) with pairwise pixel interaction. Gibbs potentials are analyti-
cally estimated from co-occurrence statistics for the prototype. Simi-
larity between an affinely transformed object and the prototype is mea-
sured with a total Gibbs energy for a characteristic pixel neighborhood.
A new algorithm for selecting the neighborhood for the MGRF model
is introduced. After an automatic initialization, the affine transforma-
tion aligning the object with the prototype is found by the gradient
search for the maximum Gibbs energy of the transformed object. Ex-
periments in Section 3 confirm that our method is more efficient for
complex medical objects than more conventional SIFT and MI based
registration techniques.

2. MGRF BASED IMAGE REGISTRATION

2.1. Basic notation.

We denoteQ = {0, . . . , Q−1}; R = [(x, y) : x = 0, . . . , X−1; y =
0, . . . , Y − 1], and Rp ⊂ R a finite set of scalar image signals (e.g.
gray levels), a rectangular arithmetic lattice supporting digital images
g : R → Q, and its arbitrary-shaped part occupied by the prototype,
respectively. A finite set N = {(ξ1, η1), . . . , (ξn, ηn)} of (x, y)-
coordinate offsets defines neighbors {((x+ ξ, y +η), (x− ξ, y−η)) :
(ξ, η) ∈ N} ∧ Rp interacting with each pixel (x, y) ∈ Rp.
The set N yields a neighborhood graph on Rp to specify transla-
tion invariant pairwise interactions with n families Cξ,η of cliques
cξ,η(x, y) = ((x, y), (x + ξ, y + η)). Interaction strengths are
given by a vector VT =

[
VT

ξ,η : (ξ, η) ∈ N ]
of potentials VT

ξ,η =[
Vξ,η(q, q′) : (q, q′) ∈ Q2

]
depending on signal co-occurrences; here

T indicates transposition.

2.2. Image normalization.

To account for monotone (order-preserving) changes of signals (e.g.
due to different illumination or sensor characteristics), the prototype

784978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



and object images are equalized using the cumulative empirical proba-
bility distributions of their signals on Rp.

2.3. MGRF based appearance model.

In line with a generic MGRF with multiple pairwise interaction [12],
the Gibbs probability P (g) ∝ exp(E(g)) of an object g aligned with
the prototype g◦ on Rp is specified with the Gibbs energy

E(g) = |Rp|VTF(g)

where FT(g) is the vector of scaled empirical probability distribu-
tions of signal co-occurrences over each clique family: FT(g) =

[ρξ,ηF
T
ξ,η(g) : (ξ, η) ∈ N ] where ρξ,η =

|Cξ,η|
|Rp| is the relative size

of the family and Fξ,η(g) = [fξ,η(q, q′|g) : (q, q′) ∈ Q2]T; here,
fξ,η(q, q′|g) =

|Cξ,η;q,q′ (g)|
|Cξ,η| are empirical probabilities of signal co-

occurrences, and Cξ,η;q,q′(g) ⊆ Cξ,η is a subfamily of the cliques
cξ,η(x, y) supporting the co-occurrence (gx,y = q, gx+ξ,y+η = q′) in
g. The co-occurrence distributions and the Gibbs energy for the object
are determined over Rp, i.e. within the prototype boundary after an
object is affinely aligned with the prototype. To account for the affine
transformation, the initial image is resampled to the back-projected Rp

by interpolation.
The appearance model consists of the neighborhood N and the

potential V to be learned from the prototype.

2.4. Learning the potentials.

The MLE of V is proportional in the first approximation to the scaled
centered empirical co-occurrence distributions for the prototype [12]:

Vξ,η = λρξ,η

(
Fξ,η(g◦)− 1

Q2
U

)
; (ξ, η) ∈ N

where U is the vector with unit components. The common scaling
factor λ is also computed analytically; it is approximately equal to Q2

if Q � 1 and ρξ,η ≈ 1 for all (ξ, η) ∈ N . In our case it can be set to
λ = 1 because the registration uses only relative potential values and
energies.

2.5. Learning the characteristic neighbors.

To find the characteristic neighborhood set N , the relative Gibs ener-
gies Eξ,η(g◦) = ρξ,ηV

T
ξ,etaFξ,η(g◦) for the clique families, i.e. the

scaled variances of the corresponding empirical co-occurrence distri-
butions, are compared for a large number of possible candidates. Fig-
ure 1 shows a lung prototype and its Gibbs energies Eξ,η(g◦) for 5000
clique families with the inter-pixel offsets |ξ| ≤ 50; 0 ≤ η ≤ 50.

To automatically select the characteristic neighbors, let us consider
an empirical probability distribution of the energies as a mixture of a
large “non-characteristic” low-energy component and a considerably
smaller characteristic high-energy component: P (E) = πPlo(E) +
(1− π)Phi(E). Because both the components Plo(E), Phi(E) can be
of arbitrary shapes, we closely approximate them with linear combina-
tions of positive and negative Gaussians. For both the approximation
and the estimation of π, we use the efficient EM-based algorithms in-
troduced in [12] (subsequent steps of the approximation are shown in
Fig. 2).

The intersection of the approximate mixture components gives
an energy threshold θ for selecting the characteristic neighbors
as shown in Fig. 2(g): N = {(ξ, η) : Eξ,η(g◦) ≥ θ} where
Phi(θ) ≥ Plo(θ)π/(1−π). The above example results in the threshold
θ = 28 producing 173 characteristic neighbors shown in Fig. 3(a),(b)

(a) (b)

Fig. 1. Lung image (a) and relative interaction energies (b) for the
clique families in function of the offsets (η, ξ).

together with the corresponding relative pixel-wise energies ex,y(g◦)
over the prototype:

ex,y(g◦) =
∑

(ξ,η)∈N
Vξ,η(g◦

x,y, g◦
x+ξ,y+η)

2.6. Appearance-based registration.

The object g is affinely transformed to (locally) maximize its rela-
tive energy E(ga) = VTF(ga) under the learned appearance model
[N ,V]. Here, ga is the part of the object image reduced to Rp by the
affine transformation a = [a11, . . . , a23]: x′ = a11x + a12y + a13;
y′ = a21x+a22y+a23. The initial transformation is a pure translation
with a11 = a22 = 1; a12 = a21 = 0, ensuring the most “energetic”
overlap between the object and prototype. The energy for different
translations (a13, a23) of the object relative to the prototype is shown
in Fig. 3(c); the chosen initial position (a∗

13, a
∗
23) in Fig. 4(a) maxi-

mizes this energy. Then the gradient search for the local energy maxi-
mum closest to the initialization selects the six parameters a; Fig. 4(b)
shows the final transformation aligning the prototype contour to the
object.

3. EXPERIMENTAL RESULTS

Due to space limitations, we focus on low dose computed tomography
(LDCT) of human lung commonly perceived as difficult for both the
area- and feature-based registration. But the like results are obtained
for several other types of complex objects (e.g., kidney images, zebra
photos, starfish photos or brain images). We compare our approach
to three popular conventional techniques, namely, to the area-based
registration using MI [7] or normalized MI [10] and to the feature-
based registration establishing correspondences between the images
with SIFT [13]. Note that for both MI and NMI we used the imple-
mentations in ITK (Ver. 2.0). Results are shown in Fig. 4(b)–(e).

To clarify why the MI- or NMI-based alignment is less accurate,
Fig. 5 compares the MI / NMI and Gibbs energy values for the affine
parameters that appear at successive steps of the gradient search for
the maximum energy. Both the MI and NMI have many local maxima
that potentially hinder the search, whereas the energy is practically uni-
modal in these experiments. The SIFT-based alignment fails because
it cannot establish accurate correspondences between similar lung and
chest areas.

In the above example the object aligned with the prototype has
mainly different orientation and scale. Figure 6 shows more diverse
lungs and their Markov-Gibbs appearance-based and MI-based align-
ment with the prototype in Fig. 1(a). Visually, the back-projection of
the prototype contour onto the objects suggests the better performance
of our approach. To quantitatively evaluate the accuracy, masks of the
co-aligned objects obtained by manual segmentation are averaged in
Fig. 7. The common matching area is notably larger for our approach
(96.8%) than for the MI-based registration (54.2%).
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Fig. 2. Empirical density of the Gibbs energy femp(E) and the two
estimated low-energy and high-energy dominant Gaussians P2(E) (a);
the alternate and absolute deviations between the empirical density and
the two dominant components (b); the estimated mixture model of the
absolute deviation (c); the final Gaussian components (d) in the joint
estimated model (e) and the resulting low- and high-energy compo-
nents (f) giving the energy threshold θ to select the neighborhood sys-
tem as shown in (g).

4. CONCLUSIONS

In this paper we introduced a new approach to align an image of a
medical object with a given prototype whose appearance is modeled
with a new Markov-Gibbs random field with pairwise interaction
model. Experimental results confirm that image registration based

(a) (b)

(c)

Fig. 3. (a) Most characteristic 173 neighbors among the 5000 candi-
dates (a; in white), (b) the pixel-wise Gibbs energies for the prototype
under the estimated neighborhood, and (c) Gibbs energies for transla-
tions of the object with respect to the prototype.

(a) (b) (c)

(d) (e)

Fig. 4. Initialization (a), our (b), MI-based (c), NMI-based (d), and
SIFT-based (e) registration.

on our Markov-Gibbs appearance model is more robust and accurate
than popular conventional algorithms. Due to the reduced variations
between the co-aligned objects, our approach results in more accurate
average shape models that are useful, e.g. in image segmentation based
on shape priors.

As we mentioned in the experimental result section, the proposed
approach is not only limited to lung images but also is suitable for
registering zebra photos, starfish photos, and brain images.
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(a) (b) (c)

Fig. 6. Original lungs (a) aligned with our (b) and the MI-based (c)
approaches.

(a) (b)

Fig. 7. Overlap between the object masks aligned with our (a; 96.8%)
and the MI-based approaches (b; 54.2%).
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